↓ Skip to main content

Recent near-Earth supernovae probed by global deposition of interstellar radioactive 60Fe

Overview of attention for article published in Nature, April 2016
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (99th percentile)
  • High Attention Score compared to outputs of the same age and source (95th percentile)

Mentioned by

news
91 news outlets
blogs
21 blogs
twitter
49 tweeters
facebook
3 Facebook pages
googleplus
1 Google+ user
video
4 video uploaders

Citations

dimensions_citation
113 Dimensions

Readers on

mendeley
93 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Recent near-Earth supernovae probed by global deposition of interstellar radioactive 60Fe
Published in
Nature, April 2016
DOI 10.1038/nature17196
Pubmed ID
Authors

A. Wallner, J. Feige, N. Kinoshita, M. Paul, L. K. Fifield, R. Golser, M. Honda, U. Linnemann, H. Matsuzaki, S. Merchel, G. Rugel, S. G. Tims, P. Steier, T. Yamagata, S. R. Winkler

Abstract

The rate of supernovae in our local Galactic neighbourhood within a distance of about 100 parsecs from Earth is estimated to be one every 2-4 million years, based on the total rate in the Milky Way (2.0 ± 0.7 per century). Recent massive-star and supernova activity in Earth's vicinity may be traced by radionuclides with half-lives of up to 100 million years, if trapped in interstellar dust grains that penetrate the Solar System. One such radionuclide is (60)Fe (with a half-life of 2.6 million years), which is ejected in supernova explosions and winds from massive stars. Here we report that the (60)Fe signal observed previously in deep-sea crusts is global, extended in time and of interstellar origin from multiple events. We analysed deep-sea archives from all major oceans for (60)Fe deposition via the accretion of interstellar dust particles. Our results reveal (60)Fe interstellar influxes onto Earth at 1.5-3.2 million years ago and at 6.5-8.7 million years ago. The signal measured implies that a few per cent of fresh (60)Fe was captured in dust and deposited on Earth. Our findings indicate multiple supernova and massive-star events during the last ten million years at distances of up to 100 parsecs.

Twitter Demographics

The data shown below were collected from the profiles of 49 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 93 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 3%
China 1 1%
Austria 1 1%
Canada 1 1%
Unknown 87 94%

Demographic breakdown

Readers by professional status Count As %
Researcher 27 29%
Student > Ph. D. Student 20 22%
Student > Bachelor 9 10%
Student > Master 9 10%
Professor 5 5%
Other 11 12%
Unknown 12 13%
Readers by discipline Count As %
Physics and Astronomy 30 32%
Earth and Planetary Sciences 26 28%
Chemistry 7 8%
Agricultural and Biological Sciences 4 4%
Engineering 2 2%
Other 7 8%
Unknown 17 18%

Attention Score in Context

This research output has an Altmetric Attention Score of 863. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 April 2021.
All research outputs
#10,458
of 17,494,559 outputs
Outputs from Nature
#1,315
of 79,892 outputs
Outputs of similar age
#249
of 270,323 outputs
Outputs of similar age from Nature
#44
of 1,005 outputs
Altmetric has tracked 17,494,559 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 99th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 79,892 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 89.6. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 270,323 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 99% of its contemporaries.
We're also able to compare this research output to 1,005 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 95% of its contemporaries.