↓ Skip to main content

Identification of Two Meloidogyne hapla Genes and an Investigation of Their Roles in the Plant-Nematode Interaction.

Overview of attention for article published in Molecular Plant-Microbe Interactions, February 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (61st percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
7 X users

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification of Two Meloidogyne hapla Genes and an Investigation of Their Roles in the Plant-Nematode Interaction.
Published in
Molecular Plant-Microbe Interactions, February 2017
DOI 10.1094/mpmi-06-16-0107-r
Pubmed ID
Authors

Cynthia Gleason, Frederik Polzin, Samer S Habash, Lei Zhang, Jan Utermark, Florian M W Grundler, Abdelnaser Elashry

Abstract

Root-knot nematodes are soil-borne pathogens that invade and establish feeding sites in plant roots. They have an extremely broad host range, including most vascular plants. During infection of a susceptible host, root-knot nematodes secrete molecules called effectors that help them establish an intimate interaction with the plant and, at the same time, allow them to evade or suppress plant immune responses. Despite the fact that Meloidogyne hapla is a significant pest on several food crops, no effectors have been characterized from this root-knot nematode species thus far. Using the published genome and proteome from M. hapla, we have identified and characterized two genes, MhTTL2 and Mh265. MhTTL2 encodes a predicted secreted protein containing a transthyretin-like protein domain. The expression of MhTTL2 was up-regulated during parasitic life stages of the nematode, and in situ hybridization showed that MhTTL2 was expressed in the amphids, suggesting it has a role in the nematode nervous system during parasitism. We also studied the gene Mh265. The Mh265 transcript was localized to the subventral esophageal glands. An upregulation in Mh265 expression coincided with the pre- and early-parasitic life stages of the nematode. When Mh265 was constitutively expressed in plants, it enhanced their susceptibility to nematodes. These transgenic plants were also compromised in flg22-induced callose deposition, suggesting the Mh265 is modulating plant basal immune responses.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 51 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 11 22%
Student > Ph. D. Student 10 20%
Researcher 5 10%
Student > Doctoral Student 4 8%
Other 4 8%
Other 9 18%
Unknown 8 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 23 45%
Biochemistry, Genetics and Molecular Biology 6 12%
Environmental Science 3 6%
Veterinary Science and Veterinary Medicine 2 4%
Engineering 2 4%
Other 2 4%
Unknown 13 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 July 2019.
All research outputs
#8,188,597
of 25,382,440 outputs
Outputs from Molecular Plant-Microbe Interactions
#810
of 2,120 outputs
Outputs of similar age
#123,187
of 324,444 outputs
Outputs of similar age from Molecular Plant-Microbe Interactions
#11
of 21 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 2,120 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one has gotten more attention than average, scoring higher than 61% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,444 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.